VOCATIONAL COURSE AUTOMOTIVE ENGINEERING

<u>UNIT – 1</u>

1. CHASSIS

A. Fill in the blanks:

- a) Chassis is used for *supporting the vehicle structure and components*.
- b) Channel section is used to provide strength and support in structural applications.
- c) Tubular section is used in *bicycle frames, race car* model.
- d) In bus chassis, the whole engine is fitted in the *front or rear* cabin.
- e) Chassis is the <u>Main</u> part of a <u>Motor</u> vehicle consisting of the frame with the <u>suspension</u> and machinery.

B. Tick the correct answer:

- 1. Channel section is made of
- a) Iron b) Wood c) Steel

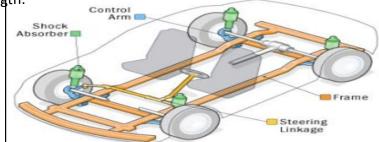
(Both c and d are correct, but typically steel is more common.)

- 2. A chassis is used for
- a) Carrying the bolt b) Opening the load c) Fixing the auto body d) Folding the nut (Fixing the auto body)
- 3. Chassis is made of
- a) Wood b) Oil *(Metal)*

c) Metal

d) Plastic

d) Aluminum


Answer the following questions

1. Explain Automotive chassis?

Ans). An automotive chassis is the structural framework of a vehicle that supports its body and various components, including the engine, transmission, suspension, and wheels. It serves as the backbone of the vehicle, providing stability, strength, and rigidity.

2. What are the different types of chassis frames used in automobiles?

- Ans).
 - Ladder Frame: Two parallel beams with cross members, strong and common in trucks and SUVs.
 - Monocoque Frame: Body and chassis combined into one unit, offering rigidity and safety, widely used in passenger cars.
 - Space Frame: A lightweight structure of interconnected tubes, used in highperformance and racing cars.
 - Tubular Frame: Made from hollow tubes for strength and flexibility, common in custom and off-road vehicles.
 - Subframe Chassis: A main frame with detachable subframes for components, facilitating easier repairs.
 - Crossover Frame: Similar to monocoque, designed for crossovers, balancing handling and strength.

VOCATIONAL COURSE AUTOMOTIVE ENGINEERING

3. What are the various types of chassis.

Ans).

- Design Type:
 - Conventional Chassis: Separate body and chassis (e.g., trucks, SUVs).
 - **Monocoque Chassis**: Integrated body and chassis for rigidity (e.g., most passenger cars).
- Structure:
 - Ladder Frame: Strong, two-beam design (e.g., commercial vehicles).
 - Space Frame: Lightweight tubular structure (e.g., sports and racing cars).

Application:

- Passenger Vehicle Chassis: Focused on comfort and handling.
- Commercial Vehicle Chassis: Built for durability and load capacity.
- Engine Placement:
 - Front Engine: Common in most vehicles.
 - Mid Engine: Improves balance, typical in sports cars.

4. Section used in the chassis

Ans).

Chassis sections are critical for providing strength and support. Here are the main types:

- 1. **C-Section**: Shaped like the letter "C," offering good strength-to-weight ratio. Commonly used in ladder frames and reinforcement structures.
- 2. **Box Section**: Hollow rectangular or square tubes that provide high rigidity and strength. Frequently used in monocoque designs and space frames.
- 3. **I-Section**: Shaped like an "I," effective in handling bending forces. Commonly found in truck chassis and structural beams.
- 4. **T-Section**: Offers resistance to bending and torsion, used in various parts of the chassis needing reinforcement.

5. Advantage of integral frame chassis over conventional chassis frame.

Ans). Integral frame chassis (monocoque) offer several advantages over conventional chassis frames:

- 1. **Weight Savings**: They are lighter due to the integration of the body and chassis, improving fuel efficiency and performance.
- 2. **Increased Rigidity**: The unified structure enhances strength and stability, resulting in better handling.
- 3. **Enhanced Safety**: Monocoque designs absorb and distribute crash forces more effectively, offering better passenger protection.
- 4. **Improved Aerodynamics**: The streamlined shape reduces drag, contributing to better efficiency.
- 5. **Simplified Manufacturing**: The integrated design can reduce assembly complexity and costs.